Change in muscle fascicle length influences the recruitment and discharge rate of motor units during isometric contractions.
نویسندگان
چکیده
This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit (n = 59) was compared at two ankle joint angles (+10 and -10 degrees around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10 degrees plantarflexion to 10 degrees dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 +/- 3.3 vs. 44.3 +/- 4.2 (SD) Nm; P < 0.001] and the average surface EMG increased (0.47 +/- 0.08 vs. 0.43 +/- 0.06 mV; P < 0.05). At reduced ankle joint angle, muscle fascicle length declined by 12.7% (P < 0.01) at rest and by 18.9% (P < 0.001) during MVC. Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 +/- 2.5 vs. 3.6 +/- 3.7 Nm; P < 0.001) or relative to their respective MVC (5.2 +/- 6.1 vs. 8.8 +/- 9.0%). Higher discharge rate and additional motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (<10% MVC), when the muscle-tendon complex was compliant, whereas recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10-35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.
منابع مشابه
Discharge properties of abductor hallucis before, during, and after an isometric fatigue task.
Abductor hallucis is the largest muscle in the arch of the human foot and comprises few motor units relative to its physiological cross-sectional area. It has been described as a postural muscle, aiding in the stabilization of the longitudinal arch during stance and gait. The purpose of this study was to describe the discharge properties of abductor hallucis motor units during ramp and hold iso...
متن کاملAdjustments differ among low-threshold motor units during intermittent, isometric contractions.
We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded f...
متن کاملDischarge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.
The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 m...
متن کاملMaximal discharge rate of motor units determines the maximal rate of force development during ballistic contractions in human
INTRODUCTION The magnitude of the neural activation, and hence the force produced by a muscle, depend on the number of motor units activated (recruitment) and the rates at which motor neurons discharge action potentials (rate coding). Although the recruitment order of motor units (size principle) is similar for contractions during which the force is gradually increased (ramp contraction) and th...
متن کاملDischarge rate variability influences the variation in force fluctuations across the working range of a hand muscle.
The goal of this study was to improve the ability of a motor unit model to predict experimentally measured force variability across a wide range of forces. Motor unit discharge characteristics were obtained from 38 motor units of the first dorsal interosseus muscle. Motor unit discharges were recorded in separate isometric contractions that ranged from 4 to 85% of the maximal voluntary contract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 5 شماره
صفحات -
تاریخ انتشار 2005